Metric Dimension of Bounded Tree-length Graphs
نویسندگان
چکیده
The notion of resolving sets in a graph was introduced by Slater (1975) and Harary and Melter (1976) as a way of uniquely identifying every vertex in a graph. A set of vertices in a graph is a resolving set if for any pair of vertices x and y there is a vertex in the set which has distinct distances to x and y. A smallest resolving set in a graph is called a metric basis and its size, the metric dimension of the graph. The problem of computing the metric dimension of a graph is a well-known NP-hard problem and while it was known to be polynomial time solvable on trees, it is only recently that efforts have been made to understand its computational complexity on various restricted graph classes. In recent work, Foucaud et al. (2015) showed that this problem is NP-complete even on interval graphs. They complemented this result by also showing that it is fixed-parameter tractable (FPT) parameterized by the metric dimension of the graph. In this work, we show that this FPT result can in fact be extended to all graphs of bounded tree-length. This includes well-known classes like chordal graphs, AT-free graphs and permutation graphs. We also show that this problem is FPT parameterized by the modular-width of the input graph.
منابع مشابه
The metric dimension and girth of graphs
A set $Wsubseteq V(G)$ is called a resolving set for $G$, if for each two distinct vertices $u,vin V(G)$ there exists $win W$ such that $d(u,w)neq d(v,w)$, where $d(x,y)$ is the distance between the vertices $x$ and $y$. The minimum cardinality of a resolving set for $G$ is called the metric dimension of $G$, and denoted by $dim(G)$. In this paper, it is proved that in a connected graph $...
متن کاملOn two-dimensional Cayley graphs
A subset W of the vertices of a graph G is a resolving set for G when for each pair of distinct vertices u,v in V (G) there exists w in W such that d(u,w)≠d(v,w). The cardinality of a minimum resolving set for G is the metric dimension of G. This concept has applications in many diverse areas including network discovery, robot navigation, image processing, combinatorial search and optimization....
متن کاملA CHARACTERIZATION FOR METRIC TWO-DIMENSIONAL GRAPHS AND THEIR ENUMERATION
The textit{metric dimension} of a connected graph $G$ is the minimum number of vertices in a subset $B$ of $G$ such that all other vertices are uniquely determined by their distances to the vertices in $B$. In this case, $B$ is called a textit{metric basis} for $G$. The textit{basic distance} of a metric two dimensional graph $G$ is the distance between the elements of $B$. Givi...
متن کاملDistributed Spanner Construction in Doubling Metric Spaces
This paper presents a distributed algorithm that runs on an n-node unit ball graph (UBG) G residing in a metric space of constant doubling dimension, and constructs, for any ε > 0, a (1 + ε)-spanner H of G with maximum degree bounded above by a constant. In addition, we show that H is “lightweight”, in the following sense. Let ∆ denote the aspect ratio of G, that is, the ratio of the length of ...
متن کاملA $(1 + {\varepsilon})$-Embedding of Low Highway Dimension Graphs into Bounded Treewidth Graphs
Graphs with bounded highway dimension were introduced in [Abraham et al., SODA 2010] as a model of transportation networks. We show that any such graph can be embedded into a distribution over bounded treewidth graphs with arbitrarily small distortion. More concretely, if the highway dimension of G is constant we show how to randomly compute a subgraph of the shortest path metric of the input g...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- SIAM J. Discrete Math.
دوره 31 شماره
صفحات -
تاریخ انتشار 2017